skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rey, David M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Riverbank groundwater discharge faces are spatially extensive areas of preferential seepage that are exposed to air at low river flow. Some conceptual hydrologic models indicate discharge faces represent the spatial convergence of highly variable age and length groundwater flowpaths, while others indicate greater consistency in source groundwater characteristics. Our detailed field investigation of preferential discharge points nested across mainstem riverbank discharge faces was accomplished by: (1) leveraging new temperature‐based recursive estimation (extended Kalman Filter) modelling methodology to evaluate seasonal, diurnal, and event‐driven groundwater flux patterns, (2) developing a multi‐parameter toolkit based on readily measured attributes to classify the general source groundwater flowpath depth and flowpath length scale, and, (3) assessing whether preferential flow points across discharge faces tend to represent common or convergent groundwater sources. Five major groundwater discharge faces were mapped along the Farmington River, CT, United States using thermal infrared imagery. We then installed vertical temperature profilers directly into 39 preferential discharge points for 4.5 months to track vertical discharge flux patterns. Monthly water chemistry was also collected at the discharge points along with one spatial synoptic of stable isotopes of water and dissolved radon gas. We found pervasive evidence of shallow groundwater sources at the upstream discharge faces along a wide valley section with deep bedrock, as primarily evidenced by pronounced diurnal discharge flux patterns. Discharge flux seasonal trends and bank storage transitions during large river flow events provided further indication of shallow, local sources. In contrast, downstream discharge faces associated with near surface cross cutting bedrock exhibited deep and regional source flowpath characteristics such as more stable discharge patterns and temperatures. However, many neighbouring points across discharge faces had similar discharge flux patterns that differed in chloride and radon concentrations, indicating the additional effects of localized flowpath heterogeneity overprinting on larger scale flowpath characteristics. 
    more » « less
  2. As the climate warms and dry periods become more extreme, shallow groundwater discharge is generally becoming a less reliable source of streamflow while deep groundwater discharge remains a more resilient source. The implications of shifts in the relative balance of shallow and deep groundwater discharge sources are profound in gaining streams. These different sources exert critical controls on stream temperature and water quality as influenced by legacy groundwater contaminant transport. Groundwater discharge flux rates over time were used for the inference of source groundwater characteristics to prominent riverbank groundwater discharge faces along the mainstem Farmington River, CT USA. To estimate groundwater discharge rates, we deployed sediment temperature loggers (iButton #DS1922L, Maxim Integrated, Inc., San Jose, CA, USA) in vertical profilers installed directly into mapped preferential groundwater discharge points across extensive riverbank discharge face features.Temperature data contained in this release were collected from June 24 to November 5, 2020, at 40 distinct discharge point riverbank locations, similar to those described by Barclay et al. (2022) and Briggs et al. (2022). Saturated sediment thermal conductivity and heat capacity were measured in-situ with a TEMPOS Thermal Property Analyzer (TEMPOS, Meter Group, Inc., Pullman, WA, USA) at multiple points across each riverbank discharge face to aid in estimating groundwater discharge flux rates. Barclay, J. R., Briggs, M. A., Moore, E. M., Starn, J. J., Hanson, A. E. H., & Helton, A. M. (2022). Where groundwater seeps: Evaluating modeled groundwater discharge patterns with thermal infrared surveys at the river-network scale. Advances in Water Resources, 160. https://doi.org/10.1016/j.advwatres.2021.104108 Briggs, M. A., Jackson, K. E., Liu, F., Moore, E. M., Bisson, A., & Helton, A. M. (2022). Exploring Local Riverbank Sediment Controls on the Occurrence of Preferential Groundwater Discharge Points. Water, 14(1). https://doi.org/10.3390/w14010011 
    more » « less
  3. Abstract This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long‐Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time‐lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process‐based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally. 
    more » « less